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Abstract

Every U.S. state has a database of criminal offenders’ DNA profiles. These databases
receive widespread attention in the media and popular culture, but there has been no
rigorous analysis of their impact on crime. This paper intends to fill that gap. I exploit
the details and timing of state DNA database expansions in two ways, first to address
the effects of DNA profiling on individuals’ subsequent criminal behavior and then to
address the aggregate effects on crime rates. I show that DNA databases deter crime
by profiled offenders, reduce crime rates, and are more cost-effective than traditional
law enforcement tools.
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1 Introduction

Technology is transforming our criminal justice system. Of particular interest are new
tools that make it easier and less expensive to identify criminal offenders, often through
increased surveillance. These provide an important alternative to traditional methods of
crime-prevention, particularly long-term incarceration. However, because these tools are so
different from previous crime-prevention methods, their effects are uncertain.

In this paper, I analyze the effects of one high-tech law enforcement tool: DNA databases.
Beginning in 1988, states passed legislation to create (and subsequently expand) databases
of criminal offenders’ DNA profiles. The goal of cataloguing these genetic fingerprints is to
quickly and accurately match known offenders with crime scene evidence, thereby deterring
profiled offenders from committing more crime and taking serial offenders off the streets
more quickly. This paper addresses two questions related to databases’ effectiveness: How
has DNA profiling affected profiled offenders’ criminal behavior, and what are the databases’
aggregate effects on crime rates?

State-level legislation periodically expands state databases to add new categories of of-
fenders; these expansions provide useful variation that allows me to address both questions
using quasi-experimental methods. By comparing offenders released before and after the
laws’ effective dates, I can measure the individual-level effect on profiled offenders’ behav-
ior. Individuals released just after those dates are substantially more likely to be required
to provide a DNA sample, but otherwise look very similar to those released just before.
Subsequent differences in behavior can thus be attributed to the effect of the DNA require-
ment. Using criminal history data from seven states, I compare recidivism rates for offenders
released pre- and post-expansion to test whether DNA profiling has a deterrent effect on
crime.

Next, I use annual state-level data on DNA database size and crime rates from 2000 to
2010 to test the aggregate effect of DNA profiling on public safety. Database size – a proxy
for the probability that a would-be offender is in the database – is endogenous, so I use the
timing of the above-mentioned expansions to construct instrumental variables. The timing
of the expansions is unrelated to underlying crime trends or state characteristics that might
affect future crime rates, and so these law changes provide exogenous shocks to the number
of profiles in a state database. Using these instruments, I measure the effect of database
size on state crime rates.

In these analyses, I focus on database expansions that targeted felony convicts and
inmates – the relevant groups during this period – and find significant crime-reducing effects
on both the individual and aggregate levels.

At the individual level, I first show that the pre- and post-expansion groups look very
similar in terms of their propensity to reoffend. I then estimate that the requirement to
submit a DNA sample reduces the likelihood of a new conviction within five years by 4.5
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percentage points (17%) for serious violent offenders.1 This effect is statistically significant
(p < 0.05) and highly robust to alternative samples and specifications. I also estimate
that the DNA requirement reduces 5-year recidivism by serious property offenders, by 2.4
percentage points (6%). This effect is only marginally significant (p < 0.10) and less robust,
but provides suggestive evidence that DNA profiling also affects the behavior of this group.
Given that DNA profiling should also have a positive probative effect – conditional on
offending, it increases the probability of getting caught – the magnitudes of these estimates
represent lower bounds on the true deterrent effects. These results are consistent for different
choices of sample selection criteria and functional forms, which I present in Section 3.4.

While these effects on profiled offenders are encouraging, the aggregate effect on crime is
of greater relevance for policy-makers. Both deterrence and incapacitation should decrease
the total amount of crime in each state, barring rapid replacement by new offenders. As
more potential reoffenders are added to state DNA databases, the number of crimes should
fall. Does it?

OLS estimates of the effect of database size on crime rates will be biased upwards because
the number of profiles and number of crimes in a state are simultaneously determined.
Also, state governments’ adeptness and degree of motivation with regard to implementing
database expansions affect the number of profiles uploaded. These state characteristics
might also affect crime rates, resulting in omitted variable bias. I use an instrumental
variable (IV) approach to eliminate these biases.

Specifically, I take advantage of substantial, exogenous variation in the timing of state
database expansions. I first show that these expansion dates are not correlated with pre-
period crime rates or state characteristics that might independently affect crime trends. I
then exploit this variation to construct a simulated IV that predicts the number of qualifying
offenders over time in each state, based on the timing of expansions and pre-period conviction
rates. This instrument estimates the number of profiles that should be in each database,
rather than the number that are actually uploaded. The resulting instrument is highly
correlated with actual database size, but is not simultaneously determined or affected by
how well states implement their database laws. It is correlated with crime rates only through
its correlation with database size.

Using this simulated instrument and data I collected on database size in each state,
I find that, between 2000 and 2010, increasing the size of state databases lowered crime
rates. Based on my preferred specification, one additional DNA profile per 100,000 residents
decreased violent crime by 0.051 offenses per 100,000 residents per year, and decreased
property crime by 0.323 offenses per 100,000 residents per year. These effect sizes are large,
but imprecisely measured. The 95% confidence intervals imply that growth in the average
database from 2000 to 2010 decreased violent crime by 7–45% and property crime by 5–

1I will use the term "serious offense" to refer to FBI Index I offenses: felony homicide and non-negligent
manslaughter, forcible rape, aggravated assault, robbery, burglary, larceny, vehicle theft. and arson.
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35%. I find statistically significant, negative effects on each individual type of crime, except
for burglary. The absence of any significant impact on burglary rates may be due to more
limited use of DNA evidence from property crime scenes2, and limited crossover between
burglary and other crimes. It might also imply a high replacement rate for burglary.3

These results are robust to alternative IV specifications, and there is no evidence that
pre-existing trends explain the effects. Database size does not have a statistically-significant
effect on arrest rates, providing more evidence that databases’ effects on crime are driven
by deterrence, not incapacitation. Finally, I do not find clear evidence that the benefit
of adding additional profiles increases or decreases as databases expand. In other words,
adding minor felons appears to have the same crime-reducing effect as adding serious felons.

DNA profiling reduces crime, but is it worth the cost? Unlike law enforcement tools such
as prisons and police officers, DNA databases exhibit tremendous returns to scale. Initial
investments in computer infrastructure and crime labs were large, but the marginal cost of
adding an additional offender to an existing database is low (currently less than $40), and
this cost is falling rapidly as technology improves. Given the low marginal cost of a DNA
profile, databases must only decrease crime a small amount to justify the financial cost of
database expansions. (Privacy concerns are a separate issue and clearly more difficult to
quantify.) Based on others’ estimates of the effects of sentence enhancements and police
hiring on crime rates, I calculate that the marginal cost of preventing a serious offense is
about $7,600 using longer sentences and $26,300-62,500 using police officers. In contrast,
my results on the effect of DNA databases suggest that the marginal cost of preventing a
serious offense using DNA profiling is under $600, and falling.

This paper contributes to the literature in the following ways: (1) It is the first attempt
to measure the effect of DNA databases on crime, and the first to convincingly estimate the
effect of DNA profiling on criminal behavior. Given the widespread use of this technology
around the world, and ongoing public debates regarding the use and expansion of existing
databases, the findings of this study are highly policy-relevant. (2) These findings speak
to the likely effects of other high-tech law enforcement tools, which are frequently adopted
by law enforcement but rarely evaluated. (3) This study fits into the economics of crime
literature on how changing the probability of punishment, rather than punishment severity,
affects criminal behavior. In particular, it provides evidence that even serious offenders
respond to a higher probability of getting caught by committing fewer offenses. (4) This
paper speaks to to the larger issue of how we interact with technology, and how government
surveillance affects our behavior.

I proceed as follows: Section 2 provides background on DNA database policy in the
2Though useful DNA evidence is usually available at burglary crime scenes, it is typically not collected

or analyzed because violent crimes are given higher priority by crime labs.
3That is, as profiled offenders are deterred or incapacitated, new, unprofiled offenders quickly take their

place.
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United States; section 3 discusses the data, empirical strategy, and results for the individual-
level analysis; section 4 does the same for the crime rate analysis; section 5 considers the
cost effectiveness of DNA databases; and section 6 concludes.

2 Background on DNA database policy in the U.S.

In 1988, Colorado began collecting some convicted sex offenders’ DNA; Virginia followed
suit in 1989, requiring blood samples from sex and violent offenders, then expanding its law
to include all convicted felons in 1990. Soon, DNA profiling required a simple saliva swab
instead of a blood sample, decreasing the cost and invasiveness of DNA collection. Taking
either a blood or saliva sample is quite salient to offenders, and it appears that most were
well aware of the purpose of DNA collection.4

By 1999, with the urging and financial support of the federal government, every state
had established an offender DNA database. The FBI currently links all states’ databases
to form the Combined DNA Index System (CODIS), which contained 12.1 million offender
profiles as of December 20155; this national database is well-known to the American public
thanks to popular television crime dramas like CSI. However, there are financial and privacy
costs from collecting and analyzing offenders’ DNA samples, and – while anecdotal successes
are widely touted – it has been unclear whether the databases have public safety benefits.

The goal of these databases was not to be tougher on criminals, per se, but to increase
accuracy and hold the right people accountable for their crimes.6 They appealed to legisla-
tors as much for their potential to exonerate wrongly-convicted offenders (and prevent new
mistakes) as they did for their ability to lock up career criminals.7 For this reason, liberal

4There is anecdotal evidence that law enforcement emphasized the purpose of DNA databases at the
time of collection. Many offenders tried to avoid providing samples, suggesting they knew the probative
power of DNA profiling. (Resulting legal challenges were defeated in every state.)

5In addition, CODIS contains 2.2 million DNA profiles from arrestees. While the addition of arrestees
to state databases is an important policy issue, this paper focuses on the addition of convicted offender
profiles only. Current statistics are available at http://www.fbi.gov/about-us/lab/biometric-analysis/
codis/ndis-statistics.

6Racial bias within the criminal justice system is a primary concern (Ridgeway and MacDonald, 2009).
Tools like DNA databases have the potential to decrease racial bias by objectively identifying repeat
offenders—and rejecting incorrect identifications by police and eyewitnesses—without regard to race.

7Showing that DNA evidence does not match a convicted offender is often not enough to exonerate him
in practice. In an interview with the Council for Responsible Genetics, Peter Neufeld, co-founder of the
Innocence Project, described how DNA databases help exonerate wrongly-convicted individuals: "There are
occasions where we get a DNA test result on a material piece of evidence from a crime scene which would
exclude our client, but prosecutors still resist motions to vacate the conviction. In some of those cases, what
then tipped the balance in our favor was that the profile of the unknown individual [whose DNA was found
at the crime scene] was run through a convicted offender database and a hit was secured. Once we were able
to identify the source of the semen or blood... we were then able to secure the vacation of the conviction
for our client." He went on to add, "There’s no question that there would be fewer wrongful convictions
if there was a universal DNA databank." (CRG Staff, 2011) In 2007, Barry Scheck, the other co-founder
of the Innocence Project, told the New York Times that "many of the people his organization had helped
exonerate would have been freed much sooner, or would not have been convicted at all" if state databases
included profiles from all convicted offenders. (McGeehan, 2007)
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states were as likely as conservative states to quickly add new qualifying offenses.
However, once the laws went into effect, states varied in their ability to promptly collect

and analyze DNA samples from qualifying offenders. Collection was relatively quick and
inexpensive, and therefore began on time, but the rate at which these samples were converted
into searchable profiles (that is, analyzed in a laboratory and uploaded to the database)
varied by state. The result was often large backlogs of samples waiting for analysis.8

This imperfect implementation is important for two reasons: First, I observe when a
DNA sample was required, not when a sample was taken and uploaded. It is possible that
authorities did not collect DNA samples from some of the offenders who were required to
provide one, or that analysis was delayed. The individual-level analysis therefore measures
the effect of the intention to treat (DNA requirement), not of the actual treatment (DNA
profiling). Second, database size is likely a function of states’ adeptness and motivation in
analyzing DNA profiles, and these characteristics might affect crime through other channels.
I use an IV strategy in the crime rate analysis to correct for any omitted variable bias.

This paper focuses on the effect of profiling convicted felons, and most states included
all felony convicts in their databases by 2010. However, the use and further expansion of
DNA databases are ongoing policy issues in the United States and abroad. States continue
to add new groups of individuals, particularly misdemeanor convicts and felony arrestees.9

2.1 Related literature

Becker (1968) hypothesized that fewer people will choose to commit crime when the expected
punishment increases. That is, an individual will only offend if:

E(Benefit) > E(Cost) and I(Incarcerated) = 0, (1)

where E(Cost) = f(p, δ, s); p is the probability of conviction, conditional on reoffending; δ
is a discount factor; and s is the punishment (e.g., sentence length). E(Cost) is increasing
in each of these parameters. I(Incarcerated) indicates whether the individual is currently
incarcerated.

Consider a recently-released criminal offender who is deciding whether to commit another
crime. We can decrease the probability that he reoffends by increasing p or s; this is the
deterrent effect. If he reoffends and is convicted of the crime, which happens with probability
p, he will be unable to reoffend again because he is in prison; this is the incapacitation effect.

8It is extremely unlikely that offenders were aware of the size of sample backlogs; even policymakers were
unaware of this problem for years. If they were aware of the delays in analyzing DNA samples, this would
decrease the deterrent effect and bias my results toward zero.

9The Supreme Court’s recent decision in Maryland v. King — establishing that DNA collection from
arrestees is constitutional — drew attention to this issue and incited many voters and legislators to reconsider
their states’ laws. For more information on this case, see http://www.scotusblog.com/case-files/cases/
maryland-v-king/.
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The total effect of a policy on crime could depend on either or both of these effects: Criminals
can be deterred from offending when they are free, and physically prevented from offending
when they are in prison.

For several decades the U.S. has focused on increasing s, sentencing more and more
people to longer and longer prison terms. However, incarceration is expensive and, after
much study, appears to have limited benefits in the form of a deterrent effect, perhaps due to
offenders’ high discount rates (Chalfin and McCrary, 2014). As a result, there is increasing
interest in the other determinant of the expected cost of crime: the probability of getting
caught, p. Whether policies aimed at increasing p will prove effective depends largely on
the degree of rationality of criminal offenders. Whether offenders respond rationally to
incentives is an open question in the literature (Hansen, 2015), given high rates of mental
illness and substance abuse in this population. Evaluating the impact of DNA databases
and similar tools should help us better understand the determinants of criminal behavior,
and, therefore, how to cost-effectively improve public safety.

There is a small but growing literature on how offenders respond to the probability of
punishment. A low-tech way to increase p is to increase the size of the police force, and there
is evidence that larger police forces decrease crime rates.10 However, police officers’ effects
are typically local and difficult to scale. Another low-tech intervention, sunlight, reduces
robbery rates by increasing visibility (Doleac and Sanders, 2015). However, ambient light
is difficult to control in many settings. More promising is a program called 24/7 Sobriety
that randomly calls probationers in for drug and alcohol testing, with short but immediate
jail sentences if they fail. The latest evidence suggests it is extremely effective at reducing
DUIs and other substance-related offenses (Kilmer et al., 2013).

Most high-tech innovations — like DNA databases — work mainly by increasing p for
reoffenders. These innovations also exhibit increasing returns to scale and can easily target
subsets of the population. Examples include GPS monitoring, which has reduced recidivism
among released convicts in Argentina (DiTella and Schargrodsky, 2013), and body cameras,
which have reduced the use of excessive force by police officers, and/or false complaints by
citizens (Ariel et al., 2014). However, not all such interventions have their intended effects.
For instance, sex offender registries aim to decrease crime by increasing surveillance of known
sex offenders. Agan (2011), Prescott and Rockoff (2011), and Carr (2014) have shown that
these registries do not reduce recidivism among registered sex offenders, possibly because
the public nature of the registries creates a stigma that makes it difficult for ex-convicts to
reintegrate into society.

Many more such programs have yet to be evaluated. Gunshot sensors increase the
likelihood and speed with which police officers can arrive at the scene of gunfire; this should
increase the apprehension of violent offenders, but there is mixed anecdotal evidence and

10See Levitt (2004), Evans and Owens (2007), and Chalfin and McCrary (2014).
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no rigorous empirical evidence regarding their impact.11 Similarly, we know little about
the effects of surveillance cameras, CompStat, NIBIN, or other such tools that have become
staples of modern police departments.

So far there has been very little research on the effects of DNA databases. Roman et
al. (2008) conducted a field experiment in five communities to test the cost-effectiveness of
collecting DNA evidence in high-volume property crimes like burglary. The authors found
that investigators identified more suspects and had more cases accepted for prosecution
when they analyzed and uploaded DNA evidence from these crime scenes. Note that this
study speaks more to the potential of DNA databases than how they were actually used
in practice. That is, researchers were collecting and analyzing DNA evidence in contexts
where this was not standard practice; DNA evidence from property crime scenes has not
been a priority for most police departments until very recently. Bhati (2010) proposed and
tested a structural model of recidivism using data on criminal histories and DNA profiling
from Florida; under relatively strict assumptions, he found 2-3% reductions in recidivism
risk attributable to DNA profiling for robbery and burglary, but increases in recidivism risk
for other categories. The model’s primary identification assumption is that the deterrent
and probative effects of DNA profiling are separable, but any deterrent effect is crucially
dependent on an expected probative effect (that is, the increased probability of getting
caught). In addition, it is likely that the deterrent effect begins at the time of DNA sample
collection, which is quite salient, not on the (known to the researcher, but unknown to the
offender) date that the profile is ultimately uploaded to the database.

This paper uses criminal history data from a wider sample of states, new data on expan-
sion timing and database size, and exogenous variation in DNA requirement, to investigate
both the individual-level and aggregate effects of DNA databases as implemented in the
United States through 2010.

3 Effects on Individual Offenders

3.1 Data

In the individual-level analysis, I test the causal effect of the DNA requirement on recidi-
vism, using the effective dates of database expansions as thresholds in a fuzzy regression
discontinuity (RD) framework. To do this, I need detailed criminal histories for individual
offenders and information on their states’ database expansions.

I obtained longitudinal criminal history data from the Departments of Correction (DOCs)
in seven states: Florida, Georgia, Missouri, Montana, New York, North Carolina, and Penn-

11Carr and Doleac (2015) describe ShotSpotter data and consider their value for studying policy effects on
gun violence. Like other surveillance tools, part of ShotSpotter’s potential benefit is collecting higher-quality
data on criminal behavior.

7



sylvania.12 These are detailed, offense-level data that include unique identifiers for individual
offenders, as well as the associated dates of incarceration (including conviction and release
dates), offense type(s), and offenders’ birthdate or current age, sex, and race. Due to their
very limited number, I exclude female offenders from my analysis.

These data do not include information on actual DNA collection or profiling. Instead, I
use the details of each offender’s criminal history to determine upon which release date (if
ever) a DNA sample was required, given his state’s DNA database laws. This necessitated
matching offenses as coded in DOC datasets to those listed in DNA database statutes. To
ease comparison across states, I also determine which offenses count as FBI Index I crimes,
which have standardized definitions.

Information on the timing and details of state DNA database expansions comes directly
from state legislative histories.

The RD design requires identifying discontinuities in the probability of DNA require-
ment. Appendix Figures A-1 through A-8 plot the weekly probabilities that released offend-
ers were required to provide DNA over time, by state, for each serious offense type. The
dates of database expansions are shown by red vertical lines. Because released offenders
were often serving time for multiple convictions, the probabilities do not typically jump
from 0 to 1 at the time the relevant qualifying offense was added. For instance, consider an
inmate who is serving time for both burglary and larceny. If burglary (but not larceny) is a
qualifying offense, the inmate will be required to provide a DNA sample upon release, and he
might show up as "treated" in both the post-expansion burglary and pre-expansion larceny
samples. This type of crossover between offense categories explains why there are sometimes
two or more discontinuities in these graphs, and why a fuzzy RD design is appropriate.13

To maximize statistical power, I group (separately) the serious violent and serious prop-
erty offenders for my main analyses.14 Figures 1 and 2 plot, by state, the probabilities
that released offenders convicted of any serious violent or any serious property offense are
required to provide DNA upon release. Because several offense types are grouped together,
it is now even more likely that more than one database expansion will cause a discontinuous
increase in DNA requirement for offenders in each state’s sample.

To create offender samples for the empirical analysis, I take the individuals incarcerated
for the crime category of interest, released within one year (365 days) before or after each
relevant discontinuity in Figures 1 and 2. Again, this could result in multiple periods of

12These states were selected based on availability of data, not due to their specific characteristics. The
diverse nature of this sample should limit concerns about external validity, but of course states very different
from those in this sample might have had different experiences.

13Some of the "fuzziness" is also due to mismatches between the local and FBI definitions of an offense.
The most striking disparity in the graphs is for murder, where the FBI definition includes non-negligent
manslaughter, but many states included only homicide convicts in their databases at first. Thus, the murder
convict sample includes manslaughter convicts whose DNA was not collected after the homicide expansion.

14Serious violent offenses are murder, forcible rape, aggravated assault, and robbery. Serious property
offenses are burglary, larceny, vehicle theft, and arson.
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interest per state for a particular crime (for example, there are two discontinuities and
therefore two periods included for serious property offenses in Pennsylvania). I restrict
attention to offenders released before January 1, 2007, to ensure that everyone in the sample
is observed for a full five years after release. (This necessitates excluding the 2006 expansion
in Florida, which added property offenders.) Finally, I recenter the release dates so that
0 is the expansion date, and combine the samples from all relevant periods into one larger
sample of offenders.

The final samples include database expansions spanning the years 1994 to 2005. Sum-
mary statistics for the serious violent and serious property offender samples are shown in
Tables 1 and 2. Figure 3 plots the probability of DNA requirement for these samples.
There are clearly large, discontinuous increases in the probability of DNA requirement at
the database expansion date for each aggregated sample.

More information on the data, including the dates of the discontinuities and summary
statistics for each state dataset, is in Appendix B.

3.2 Empirical Strategy

3.2.1 Checking validity of the RD design

The purpose of the RD design is to divide offenders into treatment and control groups
with similar pre-treatment propensities to reoffend. I test that the pre- and post-expansion
samples are comparable in two ways: (1) I predict individuals’ propensities to reoffend
within 3 and 5 years, based on their observable characteristics, then test for discontinuities
in this predicted variable. (2) I conduct McCrary tests for discontinuities in the distribution
of offenders released around the threshold.

Tables 1 and 2 show the observable characteristics of offenders released before and after
the expansion dates, along with the results of t-tests for differences in means. The predicted
probabilities of recidivism, based on those observable characteristics, are at the bottom of
each table.

Consider the serious violent offenders first: Table 1 shows some differences in individual
characteristics between the pre- and post-expansion samples. Convicts released after the
expansion date have been incarcerated more times, are less likely to have been convicted
of sexual assault, and are more likely to have been convicted of robbery or vehicle theft.
There are also differences in the shares of convicts coming from each database expansion
sample (more from Florida 1995 and Pennsylvania 1996; fewer from Florida 2002, New York
1999, North Carolina 1994, and Pennsylvania 2005). However, all of these differences are
quite small in magnitude. When I predict individuals’ probability of reoffending, I find
that individuals released post-expansion are not significantly different from those released
pre-expansion. If anything, those released after the expansion are slightly more likely to
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reoffend – which would bias estimates upward – but the magnitude of that potential bias is
extremely small (less than 1% of the baseline).

Table 2 reveals even smaller differences between pre- and post-expansion samples for the
serious property offenders. Convicts released after the database expansions are more likely
to be white (less likely to be black), slightly older, and less likely to have been convicted
of larceny. There are again some differences in the shares of the aggregate sample coming
from individual database expansions (more from Florida 2000; fewer from New York 1999).
However, when I predict individuals’ probability of reoffending based on their observable
characteristics, I find no difference between the pre- and post-expansion samples. In both
cases, then, the differences in individual characteristics aren’t large or important enough to
affect convicts’ propensity to reoffend.

Appendix Figure A-9 plots the predicted probabilities of reoffending for each sample.
It shows the same effects as in the tables: a very small uptick in the predicted probability
of reoffending for serious violent offenders released after the expansion, and no change for
serious property offenders. While these results suggest the pre- and post-expansion samples
are extremely similar, and that the RD will be unbiased, I will control for offender charac-
teristics in my analyses to ensure that the small differences that do exist are not affecting
the estimates.

Next, I consider the possibility that offenders’ release dates were intentionally timed to
occur before or after the database expansions, potentially introducing selection bias. While
any such manipulation of release dates (which were determined at the time of convicts’
sentencing, and unaffected by parole decisions) would have been illegal, I check this formally
using a McCrary test of the distribution of released offenders around the expansion date.
The resulting graphs are presented in Figure 4. There is no evidence of a discontinuity in the
distribution of serious violent offenders: the distribution appears smooth and any difference
is statistically insignificant. However, there does appear to be an increase in the number
of serious property offenders released just after the expansion date. This discontinuity is
statistically significant (t = 3.29). While this discontinuity in releases does not necessarily
mean the estimates based on these data will be biased, it does call for additional scrutiny.

This aggregated sample of serious property offenders is the combination of data from
eight separate database expansions, which allows me to construct more robust subsamples.
I conduct separate McCrary tests using the data from each individual expansion in the seri-
ous property offender sample; those graphs are presented in Appendix Figure A-10. Three
expansions appear particularly problematic based on this validity test: Florida 2000, Mis-
souri 2005, and Pennsylvania 2002. When I drop those expansions, the resulting McCrary
test for the remaining sample reveals no statistically significant discontinuity; the resulting
graph is in Appendix Figure A-11. Alternatively, I could use only the expansions that show
completely smooth distributions through the expansion date threshold. The graphs of two
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expansions look ideal in this way: Georgia 2000 and North Carolina 2003. Using data from
only those expansions produces a smooth aggregate distribution, also shown in Appendix
Figure A-11. I will use each of these two constructed subsamples to check the robustness of
the full-sample serious property offender results. If the full-sample discontinuity is a statis-
tical anomaly – instead of evidence of selection – these robustness samples should produce
similar results.

3.2.2 Estimating the effects of DNA requirement on recidivism

I first test the reduced form effect of the database expansions, using Post as the indicator of
treatment (being released post-expansion). I estimate the following linear probability model
using OLS:

Pr(Recidivate)j = β1 + β2 Postj +β3 f(Release Date)j

+ β4 Post*f(Release Date)j +λstate∗year + γmonth + β5 Xj +uj , (2)

where j indexes individual offenders. λstate∗year are interactions of state and year fixed
effects, so the identification comes from within-state-year variation in the probability that
DNA is required. γmonth are month-of-year fixed effects, which control for any effect that
month of release has on recidivism risk. Xj is a vector of demographic and criminal history
information, including: race, age, types of previous convictions, and whether this was the
individual’s first incarceration. These controls should absorb a large share of the variation in
recidivism risk, and allow me to more precisely detect the effect of the treatment. However,
they should have little effect on the estimates since the pre- and post-expansion samples are
balanced.

The advantages of this reduced form approach are transparency and ease of interpreta-
tion. However, it does not utilize the information about the intensity of the treatment. This
is important here because database expansions did not typically increase the probability of
DNA requirement from 0 to 1, so the reduced form approach will underestimate the effect
of the treatment on individuals’ behavior.

To account for this information, I use the following fuzzy RD specification, estimated
using an IV 2SLS model, which effectively scales up the previous estimates based on the
proportion of individuals affected by the expansion:

Pr(Recidivate)j = β1 + β2 Pr(DNA required)j +β3 f(Release Date)j

+ β4 Pr(DNA required) *f(Release Date)j +λstate∗year + γmonth + β4 Xj +wj , (3)
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where Pr(DNA required) is estimated in a first stage regression, using Post as an instrument:

Pr(DNA required)j = δ1 + δ2 Postj +δ3 f(Release Date)j

+ δ4 Post*f(Release Date)j +λstate∗year + γmonth + δ4 Xj +vj (4)

For the sake of consistency across samples, my preferred bandwidth is 365 days (one year)
before and after the release date, for both the serious violent and serious property samples.
(Imbens-Kalyanaraman optimal bandwidth estimates are slightly larger, and differ across
samples. Appendix Figure A-12 shows each of these bandwidths.) In my preferred specifi-
cation, f(ReleaseDate) is a linear function. I will verify that the results are not sensitive to
these choices in Section 3.4.

The outcome variables are conviction of any offense within three and five years of release.
In both the reduced form and RD specifications, β2 is the coefficient of interest.

Figure 5 plots the residuals of the predicted outcome regressions estimated in Sec-
tion 3.2.1 (residual = observed recidivism - predicted recidivism). It appears the DNA
requirement decreases the probability of reoffending for both samples.15 This previews the
effect I find using the reduced form specification.

3.2.3 Interpretation of β2

There are three points to keep in mind when interpreting the effect of the DNA requirement
on recidivism:

First, as described in the previous section, I do not observe actual DNA collection, but
determine the requirement to submit a DNA sample based on individuals’ criminal histories
and incarceration spells. The coefficient β2 therefore measures the effect of the intention
to treat with DNA profiling. This might not be the same as the effect of DNA profiling
if states were slow to implement the new laws and/or if some offenders were mistakenly
released before providing a DNA sample.16 To the extent that this occurred, β2 will be
biased toward zero, particularly for earlier expansions and when using smaller bandwidths.

Second, measuring recidivism accurately is difficult because offenses are only observed
if the offender gets caught. That is, instead of the ideal outcome variable, Pr(Reoffend), I

15Appendix Figure A-13 plots the raw outcome data (probability of a new conviction within 5 years)
against the release date; we see a similar decrease for both samples.

16Statistics on the frequency of such mistakes are unavailable for the states in my sample during the
time period of interest, and it is difficult to estimate how large an effect this might have on my re-
sults. Even in more recent years, despite much more experience, states have a difficult time implementing
their policies perfectly: New York State requires DNA collection upon intake to the Corrections system,
and estimated a 92% collection rate within 2 months of an eligible sentence to a jail or prison in 2009.
[http://criminaljustice.state.ny.us/pio/annualreport/2009-crimestat-report.pdf, page 20]

12



observe Pr(Reoffend and Convicted), where

Pr(Reoffend and Convicted) = Pr(Reoffend) ∗Pr(Convicted |Reoffend) . (5)

DNA profiling should affect both factors on the right-hand side in equation 5, in oppo-
site directions. If DNA profiling helps law enforcement identify a crime’s perpetrator, as
designed, it increases Pr(Convicted | Reoffend); this is the probative effect. This increases
E(Cost) in equation 1 and should therefore reduce Pr(Reoffend); this is the deterrent effect.
The coefficient β2 estimates the net effect of a DNA requirement. My data and identifi-
cation strategy will not allow me to separate these two effects. Because the probative and
deterrent effects cancel each other out to some extent, a significant positive estimate should
be interpreted as a lower bound on the true probative effect, and a significant negative effect
should be interpreted as a lower bound on the true deterrent effect. (Note that a zero net
effect could mean that DNA databases have no effect on offenders, or that the deterrent and
probative effects cancel each other out completely.)

The third point regarding β2 has to do with generalizability. This identification strategy
depends on testing the effects of DNA databases immediately after they were expanded. It is
quite possible, even likely, that the effectiveness of this law enforcement tool grows over time
as police learn how to use it and offenders learn (perhaps through personal experience) of its
probative effect. It is also possible that offenders gradually learn how to avoid detection by
DNA analysis. Therefore, it is not clear whether the short-term effects found in this part of
the paper should be thought of as upper or lower bounds on the longer-term effects. For this
reason, the aggregate effects of DNA databases on crime over the longer term—presented
in Section 4—will be an important supplement to this analysis.

3.3 Results

Table 3 presents results of the first-stage regression for the 2SLS analysis. Being released
post-expansion clearly has a large, positive effect on the probability of DNA requirement:
0.42 for serious violent offenders and 0.78 for serious property offenders (on a 0–1 scale).
Both estimates are highly statistically significant (p < 0.01).

Table 4 shows the estimated effect of the DNA requirement on serious violent offenders
in the first panel, and serious property offenders in the second panel. Coefficients show
the percentage point change in the probability of conviction for any offense within three
years (Columns 1–6) and five years (Columns 7–12). Many studies use three-year horizons
to measure recidivism, but it is clear in this case that it takes five years for statistically
significant effects to become evident, perhaps because it takes a while for offenders to learn
of DNA’s potential and so the deterrent effect is delayed. I present results for both outcome
measures, though my preferred specification uses the five-year horizon.
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Column 1 shows the reduced form effects of DNA requirement on three-year recidivism,
controlling only for the running variable and state-by-year fixed effects. Being released
post-expansion reduces the probability of recidivating within three years by 1.3 percentage
points (7%) for violent offenders; this effect is marginally significant (p < 0.10). The effect
on property offenders is negative but small and statistically insignificant.

Column 2 adds month-of-year fixed effects, to control for seasonal effects of the release
date on offenders’ outcomes. Adding this control has essentially no effect on the estimate
for violent offenders. The estimate for property offenders is now positive, but still small and
statistically insignificant.

Column 3 adds a variety of demographic and criminal history variables. The results are
nearly identical when these additional controls are added, due to the similarity of the pre-
and post-expansion samples.

Columns 4–6 show the equivalent results using an IV 2SLS model to estimate the fuzzy
RD specification. These results incorporate information about the intensity of the treat-
ment (that is, the increase in the probability of DNA requirement at the threshold), so are
generally larger than the reduced form estimates. Over the three-year time horizon, the
impact on recidivism is marginally significant only for serious violent offenders. For that
group, the DNA requirement results in a 2.9 percentage point (16%) decrease in recidi-
vism, and that estimate changes very little when additional controls are added. The effect
on serious property offenders remains small and statistically insignificant across the three
specifications.

Columns 7–12 repeat these analyses, using five-year recidivism as the outcome. Over
this longer time horizon there is more variation in the outcome measure, and the effect of
the DNA requirement becomes clearer.

Column 7 shows the reduced form effects, controlling only for the running variable and
state-by-year fixed effects. Being released post-expansion reduces the probability of recidi-
vating within five years by 1.9 percentage points (7%) for serious violent offenders; this effect
is statistically significant at conventional levels (p < 0.05). For serious property offenders,
the estimate is a 1.8 percentage point (5%) reduction; this effect is marginally significant (p
< 0.10).

Column 8 adds month-of-year fixed effects. This increases the estimated effect of being
released post-expansion, for violent offenders: the coefficient is now -2.4 percentage points
(9%), and is highly statistically significant (p < 0.01). However, adding this control reduces
the estimated effect for property offenders: the coefficient is now about half the size and
statistically insignificant.

Column 9 adds demographic and criminal history controls; the results are nearly identical
to those in Column 8.

Column 10 shows fuzzy RD results, controlling for the running variable and state-by-
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year fixed effects. Based on this specification, DNA requirement results in a 4.5 percentage
point (17%) reduction in recidivism for serious violent offenders over five years; this effect is
statistically significant (p < 0.05). For serious property offenders, the impact is a marginally-
significant 2.4 percentage point (6%) reduction in recidivism.

Column 11 adds month-of-year fixed effects, with similar effects as before. In this speci-
fication, the effect of DNA requirement on 5-year recidivism is -5.5 percentage points (21%)
for serious violent offenders; this estimate is highly statistically significant (p < 0.01). For
property offenders, DNA requirement reduces 5-year recidivism by 1.2 percentage points
(3%), but this effect is statistically insignificant.

Column 12 adds demographic and criminal history controls, which changes the effect
magnitudes only slightly from those in Column 11. Based on this specification, DNA re-
quirement results in a 5.7 percentage point (21%) reduction in recidivism for serious violent
offenders over five years; this effect is highly statistically significant (p < 0.01). For seri-
ous property offenders, the impact is a statistically insignificant 1.2 percentage points (3%)
reduction in recidivism.

Tables 5 and 6 present results separately for offenders with specific criminal histories.
These analyses suffer from limited sample sizes, but provide useful information about which
subgroups of offenders are most affected by the DNA requirement, over the 3- and 5-year
periods. It appears that effects on rape, robbery, and larceny convicts are contributing most
heavily to the aggregate results: the effects on 5-year recidivism are -32%, -20%, and -20%,
respectively, for these groups. These groups also appear to be driving the difference between
the 3- and 5-year estimates. In addition, we can see for which groups adding the full set of
controls affects the estimates. For rape, assault, robbery, larceny, and vehicle theft convicts,
adding the full set of controls tends to increase the magnitude of estimates. For burglary
convicts, adding those controls reduces the size of the effect – and this appears to be driving
the reduction in the effect size for the full property sample when controls are added.

3.4 Robustness checks

I conduct a variety of additional tests to consider the robustness of the above results:
Recall that the full sample of property offenders failed the McCrary test, so I con-

structed two subsamples with smooth distributions through the threshold. Appendix Table
A-1 presents estimated effects, using those two robustness samples of property offenders:
(1) dropping Florida 2000, Missouri 2005, and Pennsylvania 2002; and (2) only including
Georgia 2000 and North Carolina 2003. The sample sizes are now much smaller, so the esti-
mates are less precise, but the coefficients in both cases are, if anything, larger in magnitude
than those in panel 2 of Table 4. This implies that the above results for property offenders
are not being biased by the discontinuous increase in releases post-expansion.

Appendix Table A-2 further considers the extent to which the main results are being
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driven by particular database expansions. Each column drops a different expansion, in turn,
from the analysis. Results are quite consistent across the different samples for both violent
and property offenders.

The choice of bandwidth can matter a great deal in RD specifications, so I want to be
sure that the 365-day bandwidth used above produces estimates that are consistent with
those from other bandwidth options. Appendix Figure A-12 plots estimated coefficients
for the preferred specification (Column 10 in Table 4), using bandwidths ranging from 50
to 700 days. The estimates reported above are within the confidence intervals of almost
all the other other estimates, and are quite similar to the estimates for bandwidths larger
than approximately 225 days. In particular, note that the optimal bandwidths calculated
using the Imbens-Kalyanaraman (IK) method, as well as the IK method for fuzzy RDs,
are larger than the 365-day bandwidth used in my preferred specification. The latter was
chosen for consistency across samples, but for transparency I have included vertical lines in
the coefficient dot-plots denoting the IK optimal bandwidth sizes, along with the 365-day
bandwidth. The coefficient-sizes at those optimal bandwidths are nearly identical to those
found when using a 365-day bandwidth.

For very small bandwidths, the estimates are different but the confidence intervals are
quite wide. For violent offenders, estimates hover near-zero until the 200-day mark. This
could be due to delays in implementing the DNA database expansion; any such delays would
lead me to incorrectly label some post-expansion offenders as treated when they were not.
For property offenders, the coefficients are large and negative for small bandwidths but
shrink as the bandwidth widens, leveling off at the effect-size reported above.

Finally, some might worry that the assumption that the running variable has a linear
effect on recidivism is too strict. Appendix Table A-3 presents results as the functional
form of the running variable changes. While higher-order polynomials quickly strain the
statistical power of these data, all estimates are well within the confidence intervals of the
others.

4 Effects on Crime Rates

The effect on profiled offenders is not the only determinant of DNA databases’ effects on
crime. Factors such as the reactions of unprofiled and never-offenders, the use of forensic
evidence by law enforcement, the response to such evidence from jurors and judges17, and
changes in the behavior of crime victims and the general public all contribute to the net
effect of this law enforcement tool.

To address the most policy-relevant question, I investigate the causal effect of DNA
17In particular, there is anecdotal evidence that jurors have come to expect high-quality forensic evidence

in all types of cases. This is commonly referred to as the "CSI effect"; see Owens (2010) for a review of the
available evidence on the existence of this effect.

16



database size on crime rates. DNA databases are designed to affect crime by increasing
the probability that a known offender gets caught if he reoffends. Thus, the effectiveness
of a state’s DNA database increases with the probability that a potential offender is in the
database; this probability is the intensity of treatment. In the years soon after each database
expansion, this probability is highly correlated with the size of the database relative to the
state population.18

The problem with this treatment variable is that database size is endogenous. The num-
ber of criminal offenders and offender DNA profiles in a state are simultaneously determined
and positively correlated, so OLS estimates of the effect of database size on crime rates will
be biased upwards. At the same time, states’ adeptness and motivation with regard to im-
plementing database laws will also affect database size. Because these state characteristics
might affect crime rates through other channels, OLS estimates could suffer from omitted
variable bias. I therefore need an instrument for database size.

There is substantial anecdotal evidence that database expansions were frequently trig-
gered by "if only" cases – high-profile murders or rapes that could have been prevented "if
only" the offender had been added to the database after an earlier, more minor conviction
or arrest. Such incidents are typically unrelated to underlying crime trends, and so the
timing of database expansions should be exogenous shocks to state database size. I will first
confirm that the variation in law timing is exogenous, then use that variation to construct
instrumental variables for database size. Finally, I’ll use these instruments to test the effect
of database size on state crime rates.

4.1 Data

I consider the effect of DNA databases during the years 2000-2010. This is relatively early
in their development, so database size should be highly correlated with the intensity of
treatment.19

To ease comparison across states, I group database expansion types into four categories:
felony sex offenses, felony violent offenses, felony burglary, and all other felony offenses.
Legislated expansions can apply to new convicts and/or anyone incarcerated on or after
the effective date. Information on database expansion timing comes directly from state
legislative histories. The year of each category of expansion, by state, is shown in Appendix
Table A-4.

18 This is because most profiles are from offenders who are still active. However, as those profiled offenders
get older, die, or move out of state, their profiles are not deleted, so databases continue to grow. The number
of profiles per capita in the database therefore becomes a less useful proxy over time for the probability than
an active offender will get caught.

19I focus on years 2000 and later because a change in DNA analysis technology dramatically decreased
the cost of analyzing DNA samples in that year. It also required states to reanalyze any samples they had
previously uploaded to their databases. In this sense, 2000 served as a “reset" year, and DNA database
expansions should affect crime rates differently before and after this point.
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Historical data on state DNA database size did not previously exist, and so I constructed
a dataset using a variety of sources – primarily data from state forensic agencies and media
reports. (See Appendix B for more information.) The resulting annual data on database
size are likely measured with error, but instrumenting for them will remove any attenuation
bias. Note that data on overall database size are the best available; more information (such
as the type of offender each profile came from, or the offender’s age) would be very helpful,
but current database structures don’t allow those types of queries.20

Annual data on crime rates come from the FBI’s Uniform Crime Reports (UCR). I use the
following offense types: murder, forcible rape, aggravated assault, robbery, burglary, larceny,
and vehicle theft. (I exclude arson because there are too few arsons each year to produce
meaningful estimates.) I consider effects on those crimes individually, and aggregated to
violent crimes (murder, forcible rape, aggravated assault, robbery) and property crimes
(burglary, larceny, and vehicle theft).

I create a simulated instrument by predicting the number of qualifying offenders in each
state, for each year. These predictions are based on pre-period rates of newly-convicted
offenders and incarcerated inmates, as well as the timing of database expansions.

Alternative IV specifications use estimates of pre-period reported offenses, arrests, con-
victions, or releasees as proxies for newly-convicted offenders. Data on pre-period reported
offenses comes from the 1999 UCR. Arrests are based on the number of cleared offenses
from the 1999 UCR. Convictions are based on the number of cleared offenses, multiplied by
the share of arrested offenders who were convicted, by type of crime (using 2000 data from
the State Court Processing Statistics). Releasees are based on convictions, lagged by the
expected time served for each crime type (from the 1999 National Corrections Reporting
Program). I also estimate the share of arrests, convictions, and releases of offenders under
age 40 (when offenders are more likely to be active), based on arrestee and convict demo-
graphics from the 2000 State Court Processing Statistics. My preferred specification uses
the number of pre-period convictions as a proxy for newly-convicted offenders, since it is
closest in concept to the actual number of interest, but note that the results are very similar
across all of these IV options.

Incarcerated inmates are defined as the number of offenders incarcerated for a particular
offense. Data on pre-period prison inmate populations by state come from the 1999 National
Jail Census, maintained by the Bureau of Justice Statistics (BJS). I estimate the share
incarcerated for each type of offense based on national data, also from the BJS.

For the years 2000-2010, these data yield an unbalanced panel of 344 state-by-year ob-
servations where both database size and simulated instruments are available. In all cases the
rates are determined by dividing by the state population, from the U.S. Census. Summary
statistics are shown in Table 7.

20Based on conversations with several state database administrators.
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Finally, in a robustness check I consider the effect of DNA database size on the probability
of making an arrest in new crimes. Data for the probability of making an arrest come from
the FBI’s National Incident-Based Reporting System (NIBRS), for 2000-2010. NIBRS is not
available for all states in all years, but provides much richer data on each reported crime in
a jurisdiction — including, most crucially, whether an arrest was made in a particular case.
These data yield 1.9 million violent offenses and 15.3 million property offenses in states and
years where database size and simulated instruments were available.

4.2 Empirical Strategy

4.2.1 Exogeneity of database expansion timing

Within-state variation in database size comes largely from legislation adding new types of
offenders. Before using these shocks to database size to construct instrumental variables, I
want to make sure that they are exogenous with respect to other factors that might affect
crime trends.

Appendix Tables A-5 through A-8 show the effects of state characteristics (including
racial composition, poverty rate, educational attainment, political leanings, and pre-period
violent crime rates) on the timing of database expansions, by type of expansion. The top
panel in each table shows the effects of state characteristics on the year of each expansion;
the bottom panel shows the effects of state characteristics on whether a state’s expansion
was relatively late (after the median year). Very few estimates are statistically significant,
and their signs are inconsistent, showing no clear patterns.

Figure 6 plots violent and property crime rates by year, relative to the timing of what was
typically the first substantive database expansion in each state: adding new violent crime
convicts. This is the cleanest event, as preceding years are less likely to be confounded
by other expansions. While both violent and property crime rates were increasing in pre-
expansion years, we see a clear break in trend at year 0, when the databases were expanded
to add violent crime convicts. Appendix Figures A-14 through A-18 show similar plots for
other types of database expansions. These are more difficult to interpret because of the
cumulative nature of these law changes. We see effects at year 0 in the cases of adding
burglary convicts, violent inmates, burglary inmates, and (to a lesser degree) adding all
felony inmates. In other graphs (for instance, for the addition of all felony convicts), we see
the trend change a couple years before the expansion of interest, but again, those years are
confounded by the (perhaps larger) effects of previous database expansions – for instance,
violent and burglary convicts.

Overall, these provide strong evidence that the dates of database expansions were in-
dependent of pre-existing trends and characteristics that might affect future crime rates. I
will therefore use the timing of these expansions to construct instrumental variables.
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4.2.2 Constructing simulated instrumental variables

I predict the number of qualifying offenders using the following equation:

Predicted Qualifying Offenderss,t =
∑
j

[1999 Conviction Rates,j ∗Years Convicts Includeds,t,j

+
∑
j

[1999 Inmate Rates,j ∗ I(Inmates Includeds,t,j)], (6)

where s indexes states, t indexes years, and j indexes offense categories. In words, the
predicted number of qualifying offenders (per 100,000 residents) is a function of what the
flow of new qualifying offenders would have been if conviction rates remained at 1999 levels,
multiplied by the number of years new convicts were included; plus what the stock of
qualifying inmates would have been if prison populations remained at 1999 levels, multiplied
by an indicator of whether inmates were included. For instance, consider a state that adds
convicted and incarcerated burglars to its database in 2002, and in 1999 had 50 burglary
convictions per 100,000 residents and 200 incarcerated burglars per 100,000 residents. The
simulated instrument would be 0 in 2001, 250 in 2002 (50 convictions * 1 year + 200
inmates), 300 in 2003 (50 convictions * 2 years + 200 inmates); 350 in 2004 (50 convictions
* 3 years + 200 inmates), and so on. However, the predicted effect on qualifying offenders
would be zero for a state that had no burglary convictions or incarcerated burglars in 1999
(0 convictions * n years + 0 inmates). I want to distinguish between these two states: the
first should see a larger effect on crime than the second because the database expansion was
more meaningful. The instrument makes this distinction by quantifying the intensity of the
treatment.

This resulting variable, predicted qualifying offenders, will be the instrument for database
size. It quantifies the effects of the law changes by "simulating" the number of offenders who
should be included in the database in each year, based on legislated qualifying offenses and
pre-period (1999) conviction rates and prison populations. By estimating both the stock
and flow of qualifying offenders, I produce an instrument that is strongly correlated with
the actual number of profiles (F-statistic = 29), but uncorrelated with crime rates through
any other channel. Using pre-period statistics eliminates the simultaneity problem, and
using the number of qualifying offenders — rather than the number of uploaded profiles —
corrects the omitted variable bias. This IV approach therefore eliminates the biases that
affect the OLS estimates. Subject to the identifying assumption that legislation timing does
not depend on pre-existing crime trends, predicted qualifying offenders is a valid instrument
for the actual number of profiles in a state’s database.

As described above, I create several alternative IVs as robustness checks. Instead of using
1999 convictions to predict the flow of newly-convicted offenders, they use: (1) reported
offenses, (2) arrests, or (3) releases. Second versions of the arrest, conviction, and release
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IVs estimate the share of new offenders who were under age 40 (and thus more likely to
reoffend) in each case. We can think of these under-40 IVs as estimating the number of
likely reoffenders in the database, though of course the data on actual database size cannot
be broken down by offenders’ ages.

4.2.3 Estimating the effect of database size on crime rates

To estimate the causal effect of DNA databases on crime rates, I run a 2SLS instrumental
variable regression of crime rates on database size, relative to the state population:

Crime Rates,t = β1 + β2 ∗ Profile Rates,t + β3 ∗ Police Per Capitas,t+

λregion∗year + γstate + ws,t, (7)

where s indexes states, and t indexes years. Including state-by-year fixed effects is not
possible here, because that is the level at which the treatment varies. However, I do include
state fixed effects and region-by-year fixed effects, based on U.S. Census Regions; the latter
control non-parametrically for variation in crime rates over time, at the regional level. The
specification also includes the number of local police officers per capita, to proxy for other
state-level crime-reduction strategies. β2 is the coefficient of interest.

Profile rate is estimated by the following first stage regression:

Profile Rates,t = δ1 + δ2 ∗ Predicted Qualifying Offenderss,t + δ3 ∗ Police Per Capitas,t+

λregion∗year + γstate + vs,t, (8)

where s indexes states, and t indexes years. Predicted qualifying offenders is the instrument
from equation 6.

4.3 Results

4.3.1 Effects on Crime Rates

First stage results are shown in Table 8 for my preferred IV, which uses convictions to
estimate the number of qualifying offenders. Appendix Table A-9 shows first stage results
for each of the alternative IVs described above. F-statistics range from 22.3, when using
reporting offenses as a proxy for newly-convicted offenders, to 50.9, when using releasees
under age 40 as a proxy for newly-convicted offenders. All are strong instruments by con-
ventional standards (F-statistics > 10). Since readers might prefer instruments other than
my preferred IV, I will present my main results using each of these alternatives.

The estimated effects of database size on crime rates are presented in Table 9. The top
two panels show effects on violent crime and property crime, respectively. The remaining
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panels show results by individual crime type.
Column 1 shows OLS estimates of equation 7, without the instrumental variable. As

expected, these are biased upwards. The OLS specification does not estimate a statistically-
significant effect of DNA databases on crime, in any case. For the burglary rate, the coeffi-
cient is positive, the opposite of what we would expect.

Columns 2–8 show IV estimates using predicted qualifying offenders as an instrument
for database size.

Results from my preferred IV specification are shown in Column 5. Here we see negative
and statistically significant estimates for all crimes except burglary. The coefficients suggest
that one additional DNA profile (per 100,000 residents) results in 0.051 fewer violent crimes
and 0.323 fewer property crimes (per 100,000 residents). These estimates are statistically
significant (p < 0.01 and p < 0.05, respectively) but imprecise. The 95% confidence interval
for violent crime ranges from -0.014 to -0.088 offenses. The average database grew by 2183
profiles (per 100,000 residents) over this time period, so this confidence interval implies
that DNA databases reduced annual violent crime rates by 7–45%, between 2000 and 2010,
relative to the counterfactual. For property crimes, the confidence interval ranges from
-0.075 to -0.571. This implies that, on average, DNA databases reduced annual property
crime rates by 5–35% between 2000 and 2010.

The remaining panels consider the effects on individual crime types. An additional
DNA profile reduces murder by 0.0004 offenses (relative to a baseline of 4.776), rape by
0.0045 offenses (relative to a baseline of 33.981), assault by 0.0347 offenses (relative to a
baseline of 280.35), and robbery by 0.0115 offenses (relative to a baseline of 107.96). These
consistently-significant effects on violent crime might be expected, given the focus of DNA
evidence collection on violent crime scenes during this period. We would expect a greater
deterrent effect on violent crime for profiled offenders, if they think DNA evidence is more
likely to be available at such scenes. (Indeed, this is what I found in Section 3). In addition,
serial violent offenders should be more likely to be caught and quickly incapacitated once
their DNA profile is in the database, when jurisdictions prioritized analyzing DNA evidence
from violent crime scenes.

However, as the aggregate property crime effects show, we see that DNA databases reduce
property offense rates as well. An additional DNA profile reduces larceny by 0.2087 offenses
(relative to a baseline of 2496) and vehicle theft by 0.0934 offenses (relative to a baseline
of 353.9). DNA databases do not have a statistically-significant effect on burglary, though
the coefficient is negative. As Roman et al. (2008) showed, DNA evidence in burglaries
is quite useful for identifying offenders, but it was not consistently collected and analyzed
during this period. The effects on other property crimes could be the result of non-specialist
offenders who are deterred or incapacitated due to a violent crime. Data from the first part
of this paper shed some light on this: Appendix Figures A-6 and A-7 show that a substantial
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number of larceny and vehicle theft convicts were added to the database for other, more
serious crimes (these are the non-zero observations, before the expansion that shifts most to
1). This suggests those types of offenders frequently cross over into other types of criminal
activity. In contrast, Appendix Figure A-5 shows very little such crossover by burglars.
These patterns are suggestive but are consistent with the observed effects on property crime
rates.

The remaining columns use alternative constructions of the instrument. Column 2 uses
pre-period reported offenses instead of convictions to predict the flow of newly-convicted
offenders. Column 3 uses pre-period arrests. Column 4 uses pre-period arrests of offenders
under age 40. Column 6 uses pre-period convictions of offenders under age 40. Column 7 uses
pre-period releasees. Column 8 uses pre-period releasees under age 40. These alternative
instruments vary in their statistical power, but across the board the estimated effects are
very similar, in terms of magnitude and statistical significance, to those in Column 5.

4.3.2 Are the benefits of adding marginal offenders non-linear?

The above analysis estimates the average effect of adding a marginal convicted felon to
a state’s DNA database. Given ongoing policy debates about adding more categories of
offenders, such as arrestees and misdemeanor convicts, to state databases, it is important
to consider whether the the effect of adding marginal offenders is non-linear.

We might expect increasing returns to marginal profiles if minor offenders are likely to
commit serious offenses in the future. That is, if there is crossover between crime types,
then adding offenders earlier in their criminal careers could have bigger benefits than adding
already-violent offenders who are spending many years in prison and/or are already on law
enforcement’s radar. (The stated goal of adding minor offenders is typically not to prevent
future minor offenses, it’s to catch serious violent offenders more quickly.)

To directly test whether the crime-reducing effect of a marginal profile increases or
decreases as databases grow, Appendix Table A-10 adds a quadratic term (the square of DNA
database size) to the main analysis. For both violent and property crime, the coefficient on
the quadratic term is statistically insignificant. This means I cannot reject the hypothesis
that the effect of DNA profiles on crime is linear. However, note that the sign on the
quadratic term is negative for violent crime and positive for property crime. This implies
that marginal profiles have increasing returns when it comes to reducing violent crime, and
decreasing returns when it comes to reducing property crime.

4.4 Robustness checks

It is possible that the relationship between the simulated instrument (qualifying offenders)
and database size is not linear, and this reduces its power. Appendix Table A-11 allows a
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more flexible function (adding quadratic and cubic terms) of the instrumental variable. In
general, this reduces the F-statistic, and has only a small effect on the estimates.

In addition to the event study graph in Figure 6, some readers might like more rigorous
evidence that pre-existing crime trends are not driving the empirical estimates. Appendix
Table A-12 shows the effects of adding three leads and three lags of the simulated instrument,
as well as a lag of the outcome measure. Note that in this case I am using reduced-form
estimates of the IV’s direct effect on crime rates, not 2SLS estimates. This is because the
unbalanced panel of database size precludes adding leads and lags without losing many
observations. The magnitudes of the coefficients will therefore not be comparable to the
main estimates, but their signs and significance should be.

We see that the effect of the IV on violent crime is largely robust to the addition of
leads and lags. The apparent exception is when using an IV based on releasees. However,
note that the standard errors on that estimate are large, so I cannot reject the hypothesis
that the coefficient is the same as without the leads and lags. In addition, the releasee IV
is essentially a lagged version of the convict IV, so it is difficult to interpret the effects of
leads and lags in this case. This result does suggest we should not focus on the releasee IV
in earlier estimates, however, despite the higher F-statistic.

The effect of the IV on property crime is slightly less robust: The coefficient on the
instrument in the current year is consistently negative, but the standard errors become
very large and the estimates are no longer significant. As for violent crime, the signs on
the lead and lag coefficients bounce between negative and positive. The only statistically
significant estimate (from the specification using released convicts in the IV) suggests that
the instrument from three years earlier has a negative effect on property crime in the current
year. The positive coefficient on the two-year lag is also marginally-significant in several
columns. Overall, no clear story about pre-existing trends (shown by the leads) emerges
that would raise concerns about the property crime results.

Finally, I use the same instrumental variable strategy to test the effect of database
size on the probability of arresting a suspect in newly-reported offenses. Specifically, I use
equations 7 and 8, with a 0/1 indicator of whether an arrest was made as the outcome
variable of interest. Standard errors are clustered at the jurisdiction (police department)
level.

The expected effect is ambiguous, as the use of DNA both increases the probability of
identifying repeat offenders and decreases the probability of arresting suspects without a
DNA match. In addition, as crime rates decline, the composition of offenses (and offend-
ers) is changing. Appendix Tables A-13 and A-14 present the empirical estimates of the
net effect, using incident-level NIBRS data from 2000 to 2010. There are few statistically-
significant estimates, though the signs of the coefficients suggest that larger databases result
in a lower probability of making an arrest in new crimes. (The exception is robbery, where
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the coefficient is positive.) This suggestive evidence is consistent with the hypothesis that
the remaining cases are harder to solve, perhaps because the easy-to-catch offenders are the
first to be deterred or incapacitated by DNA profiling. The result is also consistent with the
hypothesis that, as the use of DNA profiling in a particular jurisdiction increases, law en-
forcement is more cautious about making arrests based on traditional methods and evidence
(such as eye-witness testimony). This could reduce the number of wrongful convictions.

The absence of a strong positive effect on arrest probabilities suggests that the above
effects on crime rates are driven more by deterrence than by incapacitation.

5 Cost Effectiveness of DNA Databases

The value of a state DNA database depends on (1) whether the benefits of the program
exceed its costs, and (2) its cost-effectiveness relative to that of other law enforcement tools
such as hiring more police officers or lengthening prison sentences.

The cost of collecting and analyzing each DNA sample is currently less than $40, ac-
cording to a U.S. Department of Justice estimate, and less than $20 in several states.21

The marginal cost of analyzing new DNA samples continues to fall as technology improves,
and, unlike law enforcement tools such as prisons and police officers, DNA databases ex-
hibit tremendous returns to scale: There were large initial fixed costs in terms of crime lab
equipment and computer databases, but the cost of expanding the program is relatively
small.

Back-of-the-envelope calculations based on the estimated social costs of crime in McCol-
lister, et al. (2010), are shown in Table 10 and suggest that DNA databases have resulted in
dramatic savings. Based on the 95% confidence intervals on my estimates in Section 4, each
profile resulted in between 0.07 and 0.68 fewer serious offenses. Multiplying these bounds by
the estimated social cost of each crime gives us a social cost savings of between $1,566 and
$19,945 per profile. This is a broad range, but even the most conservative estimate ($1,566)
suggests DNA profiling is cost-effective. In 2010, 761,609 offender profiles were uploaded
to CODIS. At $40 apiece, this cost the state and federal governments approximately $30.5
million, but saved at least $1.2 billion annually by preventing new crimes.22 Based on my
results in Section 3, much of this crime reduction was due to the deterrent effect of DNA
profiling; if this holds over the longer term, it should decrease dependence on incarceration.

Owens (2009) estimates that a marginal year of incarceration results in 1.5 fewer serious
offenses and costs $11,350 in Maryland. This implies that preventing a marginal crime via
longer sentences costs $7,600. Estimates of the effect of police on crime rates range from 0.8

21See estimates at https://ncjrs.gov/pdffiles1/nij/sl000948.pdf.
22The Forensic Genetics Policy Initiative estimates that the fixed cost of operating and maintaining the

UK’s DNA database is $3 million dollars each year. If each U.S. state’s fixed costs are similar, this would
sum to $150 million dollars in annual fixed costs, bringing total national costs to $180.5 million. This is still
far less than the $1.2 billion annual cost savings due to avoided crime.
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to 1.9 fewer serious offenses per officer, per year (Levitt, 2002). Salary.com reports that the
median salary for a police officer in the United States is about $50,000. This implies that
preventing a marginal crime by hiring more police costs between $26,300 and $62,500, not
including benefits.

In contrast, my estimates suggest that each additional DNA profile prevents at least 0.07
serious offenses, implying that the cost of preventing a marginal serious offense is, at most,
$555, and falling. Based on this evidence, DNA databases are much more cost-effective, at
the margin, than the most common alternatives. Note that this marginal effect does not
imply that DNA profiling could substitute completely for police officers or prisons: there
are undoubtedly complementarities between the three law enforcement strategies. It does
suggest that a marginal dollar would be best spent on DNA profiling, or another tool that
is similarly scaleable.

6 Discussion

Though DNA databases have great potential – and, anecdotally, much success – until now
there has been little rigorous analysis of their effect on criminal behavior and public safety.
I present evidence that DNA databases have a net deterrent effect on convicted offenders
– particularly for violent offenders, but also for some property offenders – and that this
individual-level effect results in a decrease in crime. The effects on crime are large, statisti-
cally significant, and economically meaningful for both violent and property offenses. This
provides support for the hypothesis that it is more cost-effective to increase the probability
of conviction rather than the punishment. It also provides evidence that serious offenders
respond rationally to incentives not to commit crime.

The estimated benefits of DNA profiling, in terms of avoided crime, are striking. How-
ever, they do not account for privacy costs. Current law limits the use of DNA samples to
creating identifying profiles, and does not allow any additional analysis of individuals’ DNA.
However, some worry that providing genetic material to the government gives unscrupulous
analysts the opportunity to reveal health conditions and other sensitive information. In ad-
dition, legal scholars have argued that comparing offender profiles with all new crime scene
evidence constitutes an unwarranted search and erodes the presumption of innocence. While
such costs are difficult to quantify empirically, measuring the benefits of DNA databases
helps inform public discussions of whether this tool is worth perceived costs. The estimated
benefits also help us compare DNA databases with alternative high-tech tools, and invest
public safety resources more effectively.

One of the biggest mysteries in the economics of crime literature is why crime has fallen
across the United States over the past two decades. This study suggests that the DNA
databases established and expanded during that period might be part of the answer. How-
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ever, additional research is needed to tease apart DNA databases’ deterrent and probative
effects, and to measure the effects of adding non-felons to state databases.
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7 Figures and Tables
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Figure 1: DNA requirement for serious violent offense convicts

Notes: All graphs show the share of serious violent offense convicts released in a given week who were
required to submit a DNA sample (based on conviction details and state law). Vertical lines show dates of

database expansions. Date range: January 1, 1988, to December 31, 2011. Data source: State DOCs.
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Figure 2: DNA requirement for serious property offense convicts

Notes: All graphs show the share of serious property offense convicts released in a given week who were
required to submit a DNA sample (based on conviction details and state law). Vertical lines show dates of

database expansions. Date range: January 1, 1988, to December 31, 2011. Data source: State DOCs.
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Figure 3: Raw data: Probability of DNA requirement

Notes: Date 0 is the date of the relevant database expansion. Bandwidth: 365 days. Data source: State
DOCs and author’s calculations, as described in the text.
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Figure 4: McCrary test: Distribution of Released Convicts

Notes: Date 0 is the date of the relevant database expansion. Bandwidth: 365 days. Data source: State
DOCs.
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Figure 5: Residuals: Probability of a new conviction within 5 years minus predicted proba-
bility based on observables

Notes: Bandwidth: 365 days. Date 0 is the date of the relevant database expansion. Data source: State
DOCs and author’s calculations, as described in the text.

Figure 6: Crime rates relative to date of "violent convict" expansion

Notes: Year 0 is the year of the relevant database expansion.
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Table 3: First stage: Effect of Post-Expansion on DNA Requirement
Serious Violent Convicts Serious Property Convicts

Post-Expansion 0.4248∗∗∗ 0.7820∗∗∗
(0.0065) (0.0063)

Release Date -0.0003∗∗∗ 0.0000
(0.0000) (0.0000)

Black -0.0070∗∗ -0.0037
(0.0032) (0.0031)

Race missing -0.0104 -0.0340
(0.0589) (0.0761)

Age -0.0000 0.0002
(0.0002) (0.0002)

Age missing 0.0380∗∗ 0.0407∗∗∗
(0.0151) (0.0089)

First incarceration 0.0257∗∗∗ 0.0243∗∗∗
(0.0041) (0.0036)

Serious violent offense history 0.1469∗∗∗
(0.0040)

Serious property offense history 0.0515∗∗∗
(0.0042)

Murder history 0.1792∗∗∗
(0.0074)

Sexual Assault history 0.2848∗∗∗
(0.0076)

Aggravated Assault history 0.0472∗∗∗
(0.0056)

Robbery history 0.0361∗∗∗
(0.0058)

Burglary history 0.2076∗∗∗
(0.0044)

Larceny history -0.0074∗
(0.0039)

Vehicle Theft history -0.0855∗∗∗
(0.0046)

Arson history -0.0245∗∗
(0.0101)

Constant -0.0210∗∗∗ -0.1497∗∗∗
(0.0445) (0.0521)

Observations 50465 34917
F-statistic 4266 15415
Standard errors are shown in parentheses. * p<.10, ** p<.05, *** p<.01.
Sample: serious felony convicts released before 2007.
Bandwidth: 365 days on either side of DNA database expansion date.
State*Year FEs are included in regression but omitted from table due to limited space.
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Table 5: Effect of DNA requirement on recidivism: Violent offenders

3-year Recidivism 5-year Recidivism
Fuzzy RD (2SLS) Fuzzy RD (2SLS)
(1) (2) (3) (4)

Murder History
DNA collection 0.0009 0.0083 -0.0176 0.0219

(0.0653) (0.0618) (0.0742) (0.0711)
DNA X Release Date -0.0003 -0.0002 -0.0003 -0.0002

(0.0003) (0.0003) (0.0003) (0.0003)
Observations 4777
Pre-Expansion Mean 0.1140 0.1626
Rape History

DNA collection -0.0604 -0.0834 -0.0832 -0.1173
(0.0816) (0.0773) (0.0918) (0.0873)

DNA X Release Date -0.0006 -0.0006 -0.0004 -0.0003
(0.0004) (0.0004) (0.0005) (0.0004)

Observations 4521
Pre-Expansion Mean 0.1791 0.2608
Aggravated Assault History

DNA collection -0.0296 -0.0472 -0.0159 -0.0396
(0.0360) (0.0381) (0.0394) (0.0426)

DNA X Release Date 0.0001 0.0001 0.0003 0.0003
(0.0002) (0.0002) (0.0002) (0.0002)

Observations 24774
Pre-Expansion Mean 0.2258 0.3258
Robbery History

DNA collection -0.0338 -0.0362 -0.0721** -0.1024***
(0.0288) (0.0295) (0.0309) (0.0327)

DNA X Release Date 0.0001 0.0000 -0.0000 -0.0000
(0.0001) (0.0001) (0.0001) (0.0001)

Observations 39467
Pre-Expansion Mean 0.2478 0.3535
Controls:
State X Year FEs X X X X
Month FEs X X
Demographic X X
Criminal History X X

Note: Standard errors are shown in parentheses. * p<.10, ** p<.05, *** p<.01.
Coefficients show marginal effect of DNA requirement on the probability of a
subsequent conviction. Data source: Departments of Correction in Florida,
Georgia, Missouri, Montana, New York, North Carolina, Pennsylvania. Sample:
Convicts released before 2007 and within 365 days (before or after) DNA database
expansion. Basic specification includes: state FEs, year FEs, running variable
(recentered released date). Demographic controls include: black, race missing, age,
age missing. Criminal history controls include: first incarceration, ever convicted
of: serious property crime, murder, sexual assault, aggravated assault, robbery.
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Table 6: Effect of DNA requirement on recidivism: Property offenders

3-year Recidivism 5-year Recidivism
Fuzzy RD (2SLS) Fuzzy RD (2SLS)
(1) (2) (3) (4)

Burglary History
DNA collection -0.0126 -0.0022 -0.0308* -0.0188

(0.0149) (0.0159) (0.0159) (0.0169)
DNA X Release Date -0.0000 0.0000 -0.0000 0.0000

(0.0001) (0.0001) (0.0001) (0.0001)
Observations 37191
Pre-Expansion Mean 0.3119 0.4210
Larceny History

DNA collection -0.0443 -0.0517* -0.0900*** -0.0871***
(0.0283) (0.0307) (0.0299) (0.0324)

DNA X Release Date -0.0001 -0.0001 -0.0001 -0.0000
(0.0002) (0.0001) (0.0002) (0.0002)

Observations 16818
Pre-Expansion Mean 0.3328 0.4466
Vehicle Theft History

DNA collection -0.0316 -0.0541 0.0103 -0.0438
(0.0581) (0.0767) (0.0602) (0.0804)

DNA X Release Date -0.0007* -0.0005 -0.0006* -0.0005
(0.0003) (0.0003) (0.0004) (0.0003)

Observations 8179
Pre-Expansion Mean 0.3546 0.4783
Arson History

DNA collection 0.0044 -0.0154 0.1016 0.1060
(0.1485) (0.1311) (0.1738) (0.1536)

DNA X Release Date 0.0001 0.0001 -0.0004 -0.0004
(0.0006) (0.0006) (0.0007) (0.0007)

Observations 1049
Pre-Expansion Mean 0.1721 0.2428
Controls:
State X Year FEs X X X X
Month FEs X X
Demographic X X
Criminal History X X

Note: Standard errors are shown in parentheses. * p<.10, ** p<.05, *** p<.01.
Coefficients show marginal effect of DNA requirement on the probability of a
subsequent conviction. Data source: Departments of Correction in Florida,
Georgia, Missouri, Montana, New York, North Carolina, Pennsylvania. Sample:
Convicts released before 2007 and within 365 days (before or after) DNA database
expansion. Basic specification includes: state FEs, year FEs, running variable
(recentered released date). Demographic controls include: black, race missing, age,
age missing. Criminal history controls include: first incarceration, ever convicted
of: serious violent crime, burglary, larceny, vehicle theft, arson.
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Table 7: Summary Statistics: Crime Rate Analysis

Variable Mean Std. Dev. Min. Max. N
Crime Rates
Violent Crime rate 399.68 165.28 77.780 822.00 344
Property Crime rate 3179.6 787.19 1619.6 5632.4 344
Murder rate 4.6156 2.3327 0.4677 13.229 344
Rape rate 32.868 10.746 11.158 92.476 344
Assault rate 258.67 122.18 42.579 626.46 344
Robbery rate 103.63 56.562 6.1479 256.73 344
Burglary rate 668.34 239.38 292.30 1216.1 344
Larceny rate 2210.0 508.12 1188.9 3562.9 344
Vehicle Theft rate 301.26 150.55 73.530 1021.3 344
Years of Database Expansions
Sex Convicts 1994.3 2.7936 1988 1999 344
Violent Convicts 1996.8 3.5835 1989 2005 344
Burglary Convicts 2000.8 3.4898 1990 2009 344
All Felony Convicts 2003.0 3.9314 1990 2010 333
Sex Inmates 2000.8 1.8719 2000 2008 274
Violent Inmates 2001.0 1.8936 2000 2008 274
Burglary Inmates 2002.1 2.1998 2000 2008 243
All Felony Inmates 2003.7 2.7975 2000 2010 227
Database Size
DNA Profile rate, 2000 259.16 388.23 3.5659 1904.7 22
DNA Profile rate, 2001 329.76 471.19 21.945 2349.6 22
DNA Profile rate, 2002 507.37 537.79 51.824 2563.9 23
DNA Profile rate, 2003 548.60 472.44 0.9361 2733.4 47
DNA Profile rate, 2004 688.56 640.64 20.421 3050.1 25
DNA Profile rate, 2005 873.80 723.03 37.559 3199.6 27
DNA Profile rate, 2006 1374.9 959.36 87.583 3359.2 21
DNA Profile rate, 2007 1684.3 949.6 120.55 3493.8 19
DNA Profile rate, 2008 1777.2 853.90 213.03 3778.3 46
DNA Profile rate, 2009 2232.5 923.15 304.18 3920.5 46
DNA Profile rate, 2010 2442.1 1047.5 356.97 4137.7 46
DNA Profile rate, All Years 1304.9 1101.5 0.9361 4137.0 344
Instrumental Variables
IV – reported crime 18369 16592 44.280 71551 344
IV – arrests 4537.8 3550.0 23.856 16054 344
IV – arrests & under 40 3613.9 2805.9 19.085 12701 344
IV – convicts 2774.9 2240.3 15.770 10032 344
IV – convicts & under 40 2187.9 1739.7 12.707 7817.5 344
IV – released convicts 3851.5 2547.7 104.50 12042 344
IV – released convicts & under 40 3039.1 1981.0 83.591 9403.3 344
Police Officer rate 227.21 50.690 155.08 405.75 344

Note: Crime, police and DNA profile statistics are per 100,000 residents. Data sources:
(1) Crime rates: FBI UCR; (2) years of legislative expansion: legislative histories; (3)
police officers: FBI LEOKA: (4) DNA profiles: a variety of sources, as described in
the Appendix; (5) simulated instrument: author’s calculation, as described in text.
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Table 8: First Stage: Effect of Instrument on Profiles

DNA Profiles in Database
Predicted qualifying offenders 0.4163∗∗∗

(0.0777)
Observations 344
F-statistic 28.679

Note: Coefficient shows the effect of the simulated IV (pre-
dicted qualifying offenders, based on number of convicts)
on database size. Standard errors in parentheses.
* p<.10, ** p<.05, *** p<.01. Specification includes year
fixed effects, state fixed effects, and police officers per
capita. Standard errors are clustered by state. Simulated
instrument and profiles are per 100,000 state residents.
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Table 10: Effect of DNA Databases on the Annual Social Cost of Crime

Reported Offenses per DNA Profile Social Cost Social Cost
95% Confidence Interval per per DNA Profile

Lower Bound Upper Bound Offense Lower Bound Upper Bound
Murder -0.0008 -0.0000 $8,982,907 -$7,114 -$72
Rape -0.0078 -0.0012 $240,776 -$1,886 -$281
Assault -0.0649 -0.0045 $107,020 -$6,944 -$483
Robbery -0.0176 -0.0054 $42,310 -$744 -$229
Burglary -0.0641 0.0221 $6,462 -$414 $143
Larceny -0.3826 -0.0348 $3,532 -$1351 -$123
Vehicle Theft -0.1385 -0.0483 $10,772 -$1492 -$521
Any Serious Offense -0.6763 -0.0721 -$19,945 -$1,566
Estimates are based on the coefficients from Column 5 of Table 9 and the estimated social costs
of crimes presented in McCollister, et al. (2010).
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